The latest medical research on Travel Medicine

The research magnet gathers the latest research from around the web, based on your specialty area. Below you will find a sample of some of the most recent articles from reputable medical journals about travel medicine gathered by our medical AI research bot.

The selection below is filtered by medical specialty. Registered users get access to the Plexa Intelligent Filtering System that personalises your dashboard to display only content that is relevant to you.

Want more personalised results?

Request Access

Expansion of artemisinin partial resistance mutations and lack of histidine rich protein-2 and -3 deletions in Plasmodium falciparum infections from Rukara, Rwanda.

Malaria Journal

Emerging artemisinin partial resistance and diagnostic resistance are a threat to malaria control in Africa. Plasmodium falciparum kelch13 (k13) propeller-domain mutations that confer artemisinin partial resistance have emerged in Africa. k13-561H was initially described at a frequency of 7.4% from Masaka in 2014-2015, but not present in nearby Rukara. By 2018, 19.6% of isolates in Masaka and 22% of isolates in Rukara contained the mutation. Longitudinal monitoring is essential to inform control efforts. In Rukara, an assessment was conducted to evaluate recent k13-561H prevalence changes, as well as other key mutations. Prevalence of hrp2/3 deletions was also assessed.

Samples collected in Rukara in 2021 were genotyped for key artemisinin and partner drug resistance mutations using molecular inversion probe assays and for hrp2/3 deletions using qPCR.

Clinically validated k13 artemisinin partial resistance mutations continue to increase in prevalence with the overall level of mutant infections reaching 32% in Rwanda. The increase appears to be due to the rapid emergence of k13-675V (6.4%, 6/94 infections), previously not observed, rather than continued expansion of 561H (23.5% 20/85). Mutations to partner drugs and other anti-malarials were variable, with high levels of multidrug resistance 1 (mdr1) N86 (95.5%) associated with lumefantrine decreased susceptibility and dihydrofolate reductase (dhfr) 164L (24.7%) associated with a high level of antifolate resistance, but low levels of amodiaquine resistance polymorphisms with chloroquine resistance transporter (crt) 76T: at 6.1% prevalence. No hrp2 or hrp3 gene deletions associated with diagnostic resistance were found.

Increasing prevalence of artemisinin partial resistance due to k13-561H and the rapid expansion of k13-675V is concerning for the longevity of artemisinin effectiveness in the region. False negative RDT results do not appear to be an issue with no hrp2 or hpr3 deletions detected. Continued molecular surveillance in this region and surrounding areas is needed to follow artemisinin partial resistance and provide early detection of partner drug resistance, which would likely compromise control and increase malaria morbidity and mortality in East Africa.

A screen for Plasmodium falciparum sporozoite surface protein binding to human hepatocyte surface receptors identifies novel host-pathogen interactions.

Malaria Journal

Sporozoite invasion of hepatocytes is an essential step in the Plasmodium life-cycle and has similarities, at the cellular level, to merozoite invasion of erythrocytes. In the case of the Plasmodium blood-stage, efforts to identify host-pathogen protein-protein interactions have yielded important insights including vaccine candidates. In the case of sporozoite-hepatocyte invasion, the host-pathogen protein-protein interactions involved are poorly understood.

To gain a better understanding of the protein-protein interaction between the sporozoite ligands and host receptors, a systematic screen was performed. The previous Plasmodium falciparum and human surface protein ectodomain libraries were substantially extended, resulting in the creation of new libraries comprising 88 P. falciparum sporozoite protein coding sequences and 182 sequences encoding human hepatocyte surface proteins. Having expressed recombinant proteins from these sequences, a plate-based assay was used, capable of detecting low affinity interactions between recombinant proteins, modified for enhanced throughput, to screen the proteins for interactions. The novel interactions identified in the screen were characterized biochemically, and their essential role in parasite invasion was further elucidated using antibodies and genetically manipulated Plasmodium parasites.

A total of 7540 sporozoite-hepatocyte protein pairs were tested under conditions capable of detecting interactions of at least 1.2 µM KD. An interaction between the human fibroblast growth factor receptor 4 (FGFR4) and the P. falciparum protein Pf34 is identified and reported here, characterizing its affinity and demonstrating the blockade of the interaction by reagents, including a monoclonal antibody. Furthermore, further interactions between Pf34 and a second P. falciparum rhoptry neck protein, PfRON6, and between human low-density lipoprotein receptor (LDLR) and the P. falciparum protein PIESP15 are identified. Conditional genetic deletion confirmed the essentiality of PfRON6 in the blood-stage, consistent with the important role of this protein in parasite lifecycle. Pf34 was refractory to attempted genetic modification. Antibodies to Pf34 abrogated the interaction and had a modest effect upon sporozoite invasion into primary human hepatocytes.

Pf34 and PfRON6 may be members of a functionally important invasion complex which could be a target for future interventions. The modified interaction screening assay, protein expression libraries and P. falciparum mutant parasites reported here may be a useful tool for protein interaction discovery and antigen candidate screening which could be of wider value to the scientific community.

Ten-year trend analysis of malaria prevalence in Gindabarat district, West Shawa Zone, Oromia Regional State, Western Ethiopia.

Malaria Journal

Malaria is a major public health concern in Ethiopia, where more than half of the population lives in malaria risk areas. While several studies have been conducted in different eco-epidemiological settings in Ethiopia, there is a notable scarcity of data on the prevalence of malaria in the Gindabarat district. Therefore, this study aimed to analyse 10-year trend of malaria prevalence in Gindabarat district, West Shawa Zone of Oromia, Western Ethiopia.

A retrospective laboratory record review was conducted at Gindabarat General Hospital and Gindabarat District Health Office from September 2011 to August 2020. The retrieved data included the date of examination, age, sex and laboratory results of the blood smears, including the Plasmodium species identified. Data were summarized and presented in the form of tables, figures, and frequencies to present the results. The data were analysed using SPSS (version 25.0) and Microsoft Excel.

Over the course of 10 years, a total of 11,478 blood smears were examined in the public health facilities in the district. Of the total blood smears examined, 1372 (11.95%) were microscopically confirmed malaria. Plasmodium falciparum, Plasmodium vivax and mixed infections (P. falciparum and P. vivax) accounted for 70.77%, 20.55% and 8.67% of the cases, respectively. Malaria prevalence was significantly higher among individuals aged ≥ 15 years (12.60%, x2 = 13.6, df = 2, p = 0.001) and males (14.21%, x2 = 59.7, df = 1, p = 0.001). The highest number of malaria cases was recorded from September to November.

Malaria remains a public health problem in the district. P. falciparum was the most predominant parasite species in the area. Malaria prevalence was significantly higher among individuals aged ≥ 15 years and males. There was a remarkable fluctuation in the number of malaria cases in different months and years. In the study area malaria cases peaked in 2015 and 2017 then decreasing from 2017 to 2019, with sharp increase in 2020. Moreover, this study showed malaria cases were reported in all seasons and months, but the highest was observed from September to November. Strengthening malaria control activities is essential to further reduce the burden of malaria and pave the way for the anticipated elimination.

Efficacy of Pirikool® 300 CS used for indoor residual spraying on three different substrates in semi-field experimental conditions.

Malaria Journal

Vector control using insecticides is a key prevention strategy against malaria. Unfortunately, insecticide resistance in mosquitoes threatens all progress in malaria control. In the perspective of managing this resistance, new insecticide formulations are being tested to improve the effectiveness of vector control tools.

The efficacy and residual activity of Pirikool® 300 CS was evaluated in comparison with Actellic® 300 CS in experimental huts at the Tiassalé experimental station on three substrates including cement, wood and mud. The mortality, blood-feeding inhibition, exiting behaviour and deterrency of free-flying wild mosquitoes was evaluated. Cone bioassay tests with susceptible and resistant mosquito strains were conducted in the huts to determine residual efficacy.

A total of 20,505 mosquitoes of which 10,979 (53%) wild female Anopheles gambiae were collected for 112 nights. Residual efficacy obtained from monthly cone bioassay was higher than 80% with the susceptible, laboratory-maintained An. gambiae Kisumu strain, from the first to the tenth study period on all three types of treated substrate for both Actellic® 300CS and Pirikool® 300CS. This residual efficacy on the wild Tiassalé strain was over 80% until the 4th month of study on Pirikool® 300CS S treated substrates. Overall 24-h mortalities of wild free-flying An. gambiae sensu lato which entered in the experimental huts over the 8-months trial on Pirikool® 300CS treatment was 50.5%, 75.9% and 52.7%, respectively, on cement wall, wood wall and mud wall. The positive reference product Actellic® 300CS treatment induced mortalities of 42.0%, 51.8% and 41.8% on cement wall, wood wall and mud wall.

Pirikool® 300CS has performed really well against resistant strains of An. gambiae using indoor residual spraying method in experimental huts. It could be an alternative product for indoor residual spraying in response to the vectors' resistance to insecticides.

Cost-effectiveness of village health worker-led integrated community case management (iCCM) versus health facility based management for childhood illnesses in rural southwestern Uganda.

Malaria Journal

In Uganda, village health workers (VHWs) manage childhood illness under the integrated community case management (iCCM) strategy. Care is provided for malaria, pneumonia, and diarrhoea in a community setting. Currently, there is limited evidence on the cost-effectiveness of iCCM in comparison to health facility-based management for childhood illnesses. This study examined the cost-effectiveness of the management of childhood illness using the VHW-led iCCM against health facility-based services in rural south-western Uganda.

Data on the costs and effectiveness of VHW-led iCCM versus health facility-based services for the management of childhood illness was collected in one sub-county in rural southwestern Uganda. Costing was performed using the ingredients approach. Effectiveness was measured as the number of under-five children appropriately treated. The Incremental Cost-Effectiveness Ratio (ICER) was calculated from the provider perspective.

Based on the decision model for this study, the cost for 100 children treated was US$628.27 under the VHW led iCCM and US$87.19 for the health facility based services, while the effectiveness was 77 and 71 children treated for VHW led iCCM and health facility-based services, respectively. An ICER of US$6.67 per under five-year child treated appropriately for malaria, pneumonia and diarrhoea was derived for the provider perspective.

The health facility based services are less costly when compared to the VHW led iCCM per child treated appropriately. The VHW led iCCM was however more effective with regard to the number of children treated appropriately for malaria, pneumonia and diarrhoea. Considering the public health expenditure per capita for Uganda as the willingness to pay threshold, VHW led iCCM is a cost-effective strategy. VHW led iCCM should, therefore, be enhanced and sustained as an option to complement the health facility-based services for treatment of childhood illness in rural contexts.

Evidence of Plasmodium vivax circulation in western and eastern regions of Senegal: implications for malaria control.

Malaria Journal

Malaria elimination in Senegal requires accurate diagnosis of all Plasmodium species. Plasmodium falciparum is the most prevalent species in Senegal, although Plasmodium malariae, Plasmodium ovale, and recently Plasmodium vivax have also been reported. Nonetheless, most malaria control tools, such as Histidine Rich Protein 2 rapid diagnosis test (PfHRP2-RDT,) can only diagnose P. falciparum. Thus, PfHRP2-RDT misses non-falciparum species and P. falciparum infections that fall below the limit of detection. These limitations can be addressed using highly sensitive Next Generation Sequencing (NGS). This study assesses the burden of the four different Plasmodium species in western and eastern regions of Senegal using targeted PCR amplicon sequencing.

Three thousand samples from symptomatic and asymptomatic individuals in 2021 from three sites in Senegal (Sessene, Diourbel region; Parcelles Assainies, Kaolack region; Gabou, Tambacounda region) were collected. All samples were tested using PfHRP2-RDT and photoinduced electron transfer polymerase chain reaction (PET-PCR), which detects all Plasmodium species. Targeted sequencing of the nuclear 18S rRNA and the mitochondrial cytochrome B genes was performed on PET-PCR positive samples.

Malaria prevalence by PfHRP2-RDT showed 9.4% (94/1000) and 0.2% (2/1000) in Diourbel (DBL) and Kaolack (KL), respectively. In Tambacounda (TAM) patients who had malaria symptoms and had a negative PfHRP2-RDT were enrolled. The PET-PCR had a positivity rate of 23.5% (295/1255) overall. The PET-PCR positivity rate was 37.6%, 12.3%, and 22.8% in Diourbel, Kaolack, and Tambacounda, respectively. Successful sequencing of 121/295 positive samples detected P. falciparum (93%), P. vivax (2.6%), P. malariae (4.4%), and P. ovale wallikeri (0.9%). Plasmodium vivax was co-identified with P. falciparum in thirteen samples. Sequencing also detected two PfHRP2-RDT-negative mono-infections of P. vivax in Tambacounda and Kaolack.

The findings demonstrate the circulation of P. vivax in western and eastern Senegal, highlighting the need for improved malaria control strategies and accurate diagnostic tools to better understand the prevalence of non-falciparum species countrywide.

Barriers and misconceptions hindering reduction of intestinal schistosomiasis in Mbita Sub-County, Western Kenya.

Tropical Medicine and International Health

Community and individual participation are crucial for the success of schistosomiasis control. The World Health Organization (WHO) has highlighted the importance of enhanced sanitation, health education, and Mass Drug Administration (MDA) in the fight against schistosomiasis. These approaches rely on the knowledge and practices of the community to be successful; however, where the community knowledge is low and inappropriate, it hinders intervention efforts. Hence, it is essential to identify barriers and misconceptions related to awareness of schistosomiasis, sources of infection, mode of transmission, symptoms, and control measures.

This was a mixed-method cross-sectional study involving 1200 pre-school children randomly selected and examined for Schistosoma mansoni infection using the Kato-Katz technique. All parents/guardians of selected children were enrolled for a pre-tested questionnaire survey, while 42 were engaged in focus group discussions (FGDs). The level of knowledge and awareness among parents/guardians about schistosomiasis was evaluated in relation to the infection status of their pre-school children.

Among pre-school children, the prevalence of intestinal schistosomiasis was 45.1% (95% CI 41.7-48.5). A majority of parents/guardians (85.5%) had heard about schistosomiasis, and this awareness was associated with the participant's level of education (OR = 0.16, 95% CI 0.08, 0.34). In addition, a positive association was observed between higher educational attainment and knowledge of the causative agent (OR = 0.69, 95% CI 0.49, 0.96). Low education level was significantly associated with limited knowledge of transmission through lake water contact (OR = 0.71, 95% CI 0.52, 0.97) and infection from the lake (OR = 0.33, 95% CI 0.19, 0.57). Notably, parents/guardians who have heard of schistosomiasis could not recognize symptoms of S. mansoni infection, such as abdominal pain (91.8%, 815/888) and blood in the stool (85.1%, 756/888). Surprisingly, 49.8% (442/888) incorrectly identified hematuria (blood in urine), a key sign of S. haematobium, but not S. mansoni, in an endemic area for S. mansoni infection. The majority (82.6%, 734/888) of parents/guardians were unaware that dams are potential infection sites, despite 53.9% (479/888) of their pre-school-aged children testing positive for schistosome infection.

Despite the high level of awareness of intestinal schistosomiasis in the study area, we identified a low level of knowledge regarding its causes, modes of transmission, signs and symptoms and potential sites of transmission within the community. This study emphasizes the need for targeted educational interventions to address the misconceptions and knowledge gaps surrounding intestinal schistosomiasis through tailored community-based programs.

Optimal balance of benefit versus risk for tafenoquine in the treatment of Plasmodium vivax malaria.

Malaria Journal

A single 300 mg dose of tafenoquine (an 8-aminoquinoline), in combination with a standard 3-day course of chloroquine, is approved in several count...

Therapeutic efficacy and tolerability of artemether-lumefantrine for uncomplicated Plasmodium falciparum malaria in Niger, 2020.

Malaria Journal

Monitoring therapeutic efficacy is important to ensure the efficacy of artemisinin-based combination therapy (ACT) for malaria. The current first-line treatment for uncomplicated malaria recommended by the National Malaria Control Program in Niger is artemether-lumefantrine (AL). In 2020, an in vivo study was carried out to evaluate clinical and parasitological responses to AL as well as the molecular resistance to the drug in three sentinel sites: Agadez, Tessaoua and Gaya, in Niger.

A multi-center, single-arm trial was conducted according to the 28-day World Health Organization (WHO) 2009 therapeutic efficacy study protocol. Children between 6 months and 15 years with confirmed uncomplicated Plasmodium falciparum infection and 1000-200,000 asexual parasites/μL of blood were enrolled and followed up for 28 days. Uncorrected and PCR-corrected efficacy results at day 28 were calculated, and molecular correction was performed by genotyping the msp1, msp2, and glurp genes. The pfk13, pfdhfr, pfdhps, pfcrt and pfmdr genes were analyzed by PCR and Sanger sequencing. The Kaplan-Meier curve assessed parasite clearance.

A total of 255 patients were enrolled in the study. The adequate clinical and parasitological response after PCR correction was 98.9% (95% CI 96.4-101.0%), 92.2% (85.0-98.5%) and 97.1% (93.1-101.0%) in Gaya, Tessaoua and Agadez, respectively. No adverse events were observed. Ten mutations (SNP) were found, including 7 synonyms (K248K, G690G, E691E, E612E, C469C, G496G, P718P) and 3 non-synonyms (N594K, R255K, V714S). Two mutations emerged: N594K and V714S. The R255K mutation detected in Southeast Asia was also detected. The pfdhpsK540E and pfdhfrI164L mutations associated with high levels of resistance are absent. There is a reversal of chloroquine resistance.

The study findings indicate that AL is effective and well tolerated for the treatment of uncomplicated malaria in three sites in Niger. The emergence of a pfk13 mutation requires additional testing such as the Ring Stage Assay and CRISPR/Cas9 to confirm the role of these emerging mutations. Trial registration NCT05070520, October 7, 2021.

Prevalence of malaria and associated risk factors among household members in South Ethiopia: a multi-site cross-sectional study.

Malaria Journal

Despite continuous prevention and control strategies in place, malaria remains a major public health problem in sub-Saharan Africa including Ethiopia. Moreover, prevalence of malaria differs in different geographical settings and epidemiological data were inadequate to assure disease status in the study area. This study was aimed to determine the prevalence of malaria and associated risk factors in selected rural kebeles in South Ethiopia.

A community-based cross-sectional study was conducted between February to June 2019 in eight malaria-endemic kebeles situated in four zones in South Ethiopia. Mult-stage sampling techniques were employed to select the study zones, districts, kebeles and households. Blood sample were collected from 1674 participants in 345 households by finger prick and smears were examined by microscopy. Sociodemographic data as well as risk factors for Plasmodium infection were collected using questionnaires. Bivariate and multivariate logistic regressions were used to analyse the data.

The overall prevalence of malaria in the study localities was 4.5% (76/1674). The prevalence was varied among the study localities with high prevalence in Bashilo (14.6%; 33/226) followed by Mehal Korga (12.1%; 26/214). Plasmodium falciparum was the dominant parasite accounted for 65.8% (50/76), while Plasmodium vivax accounted 18.4% (14/76). Co-infection of P. falciparum and P. vivax was 15.8% (12/76). Among the three age groups prevalence was 7.8% (27/346) in age less than 5 years and 7.5% (40/531) in 5-14 years. The age groups > 14years were less likely infected with Plasmodium parasite (AOR = 0.14, 95% CI 0.02-0.82) than under five children. Non-febrile individuals 1638 (97.8%) were more likely to had Plasmodium infection (AOR = 28.4, 95% CI 011.4-70.6) than febrile 36 (2.2%). Individuals living proximity to mosquito breeding sites have higher Plasmodium infection (AOR = 6.17, 95% CI 2.66-14.3) than those at distant of breeding sites.

Malaria remains a public health problem in the study localities. Thus, malaria prevention and control strategies targeting children, non-febrile cases and individuals living proximity to breeding sites are crucial to reduce malaria related morbidity and mortality.

Ghana's path towards eliminating lymphatic filariasis.

Tropical Medicine and International Health

Lymphatic filariasis, also known as elephantiasis, is a debilitating parasitic disease that has been prevalent in various parts of the world, inclu...

Phytochemical evaluation of Ziziphus mucronata and Xysmalobium undulutum towards the discovery and development of anti-malarial drugs.

Malaria Journal

The development of resistance by Plasmodium falciparum is a burdening hazard that continues to undermine the strides made to alleviate malaria. As such, there is an increasing need to find new alternative strategies. This study evaluated and validated 2 medicinal plants used in traditional medicine to treat malaria.

Inspired by their ethnobotanical reputation of being effective against malaria, Ziziphus mucronata and Xysmalobium undulutum were collected and sequentially extracted using hexane (HEX), ethyl acetate (ETA), Dichloromethane (DCM) and methanol (MTL). The resulting crude extracts were screened for their anti-malarial and cytotoxic potential using the parasite lactate dehydrogenase (pLDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, respectively. This was followed by isolating the active compounds from the DCM extract of Z. mucronata using silica gel chromatography and structural elucidation using spectroscopic techniques (NMR: 1H, 12C, and DEPT). The active compounds were then targeted against P. falciparum heat shock protein 70-1 (PfHsp70-1) using Autodock Vina, followed by in vitro validation assays using ultraviolet-visible (UV-VIS) spectroscopy and the malate dehydrogenase (MDH) chaperone activity assay.

The extracts except those of methanol displayed anti-malarial potential with varying IC50 values, Z. mucronata HEX (11.69 ± 3.84 µg/mL), ETA (7.25 ± 1.41 µg/mL), DCM (5.49 ± 0.03 µg/mL), and X. undulutum HEX (4.9 ± 0.037 µg/mL), ETA (17.46 ± 0.024 µg/mL) and DCM (19.27 ± 0.492 µg/mL). The extracts exhibited minimal cytotoxicity except for the ETA and DCM of Z. mucronata with CC50 values of 10.96 and 10.01 µg/mL, respectively. Isolation and structural characterization of the active compounds from the DCM extracts revealed that betulinic acid (19.95 ± 1.53 µg/mL) and lupeol (7.56 ± 2.03 µg/mL) were responsible for the anti-malarial activity and had no considerable cytotoxicity (CC50 > µg/mL). Molecular docking suggested strong binding between PfHsp70-1, betulinic acid (- 6.8 kcal/mol), and lupeol (- 6.9 kcal/mol). Meanwhile, the in vitro validation assays revealed the disruption of the protein structural elements and chaperone function.

This study proves that X undulutum and Z. mucronata have anti-malarial potential and that betulinic acid and lupeol are responsible for the activity seen on Z. mucronata. They also make a case for guided purification of new phytochemicals in the other extracts and support the notion of considering medicinal plants to discover new anti-malarials.