The latest medical research on Pancreatic Cancer

The research magnet gathers the latest research from around the web, based on your specialty area. Below you will find a sample of some of the most recent articles from reputable medical journals about pancreatic cancer gathered by our medical AI research bot.

The selection below is filtered by medical specialty. Registered users get access to the Plexa Intelligent Filtering System that personalises your dashboard to display only content that is relevant to you.

Want more personalised results?

Request Access

Inhibition of DEF-p65 Interactions as a Potential Avenue to Suppress Tumor Growth in Pancreatic Cancer.

Pancreatic cancer research

The limited success of current targeted therapies for pancreatic cancer underscores an urgent demand for novel treatment modalities. The challenge ...

Common variation in a long non-coding RNA gene modulates variation of circulating TGF-β2 levels in metastatic colorectal cancer patients (Alliance).

Pancreatic cancer research

Herein, we report results from a genome-wide study conducted to identify protein quantitative trait loci (pQTL) for circulating angiogenic and inflammatory protein markers in patients with metastatic colorectal cancer (mCRC). The study was conducted using genotype, protein marker, and baseline clinical and demographic data from CALGB/SWOG 80405 (Alliance), a randomized phase III study designed to assess outcomes of adding VEGF or EGFR inhibitors to systemic chemotherapy in mCRC patients. Germline DNA derived from blood was genotyped on whole-genome array platforms. The abundance of protein markers was quantified using a multiplex enzyme-linked immunosorbent assay from plasma derived from peripheral venous blood collected at baseline. A robust rank-based method was used to assess the statistical significance of each variant and protein pair against a strict genome-wide level. A given pQTL was tested for validation in two external datasets of prostate (CALGB 90401) and pancreatic cancer (CALGB 80303) patients. Bioinformatics analyses were conducted to further establish biological bases for these findings.

The final analysis was carried out based on data from 540,021 common typed genetic variants and 23 protein markers from 869 genetically estimated European patients with mCRC. Correcting for multiple testing, the analysis discovered a novel cis-pQTL in LINC02869, a long non-coding RNA gene, for circulating TGF-β2 levels (rs11118119; AAF = 0.11; P-value < 1.4e-14). This finding was validated in a cohort of 538 prostate cancer patients from CALGB 90401 (AAF = 0.10, P-value < 3.3e-25). The analysis also validated a cis-pQTL we had previously reported for VEGF-A in advanced pancreatic cancer, and additionally identified trans-pQTLs for VEGF-R3, and cis-pQTLs for CD73.

This study has provided evidence of a novel cis germline genetic variant that regulates circulating TGF-β2 levels in plasma of patients with advanced mCRC and prostate cancer. Moreover, the validation of previously identified pQTLs for VEGF-A, CD73, and VEGF-R3, potentiates the validity of these associations.

Drainage for fluid collections post pancreatic surgery and acute pancreatitis: similar but different?

Pancreatic cancer research

Postoperative pancreatic fistulas (POPFs) are common adverse events that occur after pancreatic surgery. Endoscopic ultrasonography (EUS)-guided dr...

Assessing the effectiveness and safety of surufatinib versus everolimus or sunitinib in advanced neuroendocrine neoplasms: insights from a real-world, retrospective cohort study using propensity score and inverse probability treatment weighting analysis.

Pancreatic cancer research

While surufatinib, sunitinib, and everolimus have shown efficacy for advanced neuroendocrine neoplasms (NENs) in randomized controlled trials (RCTs), direct comparisons in a real-world setting remain unexplored. This gap highlights the clinical need to understand their comparative effectiveness and safety within the diverse Chinese population. Addressing this, our study provides insights into the real-world performance of these therapies, aiming to inform treatment selection and improve patient outcomes.

A retrospective, observational study was conducted at Fudan University Shanghai Cancer Center, including patients with advanced NENs treated with surufatinib, sunitinib, or everolimus between July 2020 and April 2023. Eligibility criteria focused on histologically confirmed, locally advanced, unresectable, or metastatic NENs, with patients having received at least one month of targeted therapy. We employed inverse probability weighting (IPW) with the propensity score (PS) matching to adjust for the bias of baseline characteristics. The assessment of covariates included age, sex, performance status, primary tumor site, functional status, genetic mutations, tumor differentiation, Ki67 index, tumor grade, metastasis site, and previous therapies. The primary outcome was progression-free survival (PFS), and secondary outcomes included objective response rate (ORR), disease control rate (DCR), and adverse events (AEs).

The study enrolled 123, 56, and 68 locally advanced or metastatic NEN patients treated with surufatinib, sunitinib, and everolimus, respectively. Before adjusting for confounding factors, surufatinib was used less frequently as a first-line treatment compared to sunitinib and everolimus in pancreatic NENs (pNENs) (11.1% vs. 22.1%, P=0.057). Significant differences were noted in prior treatments and tumor characteristics between surufatinib and everolimus groups in extrapancreatic NENs (epNENs) (P<0.05). Post-IPW, these disparities were resolved (P>0.05). Surufatinib demonstrated superior median PFS (mPFS) in both pancreatic [8.30 vs. 6.33 months, hazard ratio (HR) 0.592, P<0.001] and epNENs (8.73 vs. 3.70 months, HR 0.608, P<0.001) compared to everolimus or sunitinib. Notably, male gender (HR 1.75, P=0.001), functional status (HR 2.09, P=0.01), Ki67 index >20% (HR 12.7, P=0.004), previous somatostatin analogue (SSA) treatment (HR 1.73, P=0.001), germline mutation (HR 5.62, P<0.001), poor differentiation (HR 7.45, P<0.001), liver metastasis (HR 1.72, P=0.001) and multiple treatment lines (HR 1.62 for 2nd line, P=0.04; HR 1.88 for ≥3rd line, P=0.01) were identified as negative prognostic factors for PFS. Conversely, dose adjustment (HR 0.63, P=0.009) and treatment with surufatinib (HR 0.58 for pNEN, P<0.001; HR 0.62 for epNEN, P=0.002) were correlated with longer PFS.

In a real-world Chinese cohort, surufatinib significantly outperformed sunitinib and everolimus in prolonging PFS among advanced NEN patients, with identifiable clinical features impacting survival, and conclusions regarding superiority should be interpreted with caution due to the retrospective design. Our findings underscore the need for prospective studies to further validate these results and explore additional predictive biomarkers for personalized treatment strategies.

Solute carrier family 16 member 1 as a potential prognostic factor for pancreatic ductal adenocarcinoma and its influence on tumor immunity.

Pancreatic cancer research

Solute carrier family 16 member 1 (SLC16A1) serves as a biomarker in numerous types of cancer. Tumor immune infiltration has drawn increasing attention in cancer progression and treatment. The objective of our study was to explore the association between SLC16A1 and the tumor immune microenvironment in pancreatic ductal adenocarcinoma (PDAC).

Data were obtained from The Cancer Genome Atlas. The xCell web tool was used to calculate the proportion of immune cells according to SLC16A1 expression. To further explore the mechanism of SLC16A1, immunity-related genes were screened from differentially expressed genes through weighted gene coexpression network analysis, examined via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, and filtrated using univariate Cox regression and least absolute shrinkage and selection operator regression model combined correlation analysis (P<0.05). Next, CIBERSORT was used to analyze the correlation between immune cells and five important genes. SLC16A1 expression and its clinical role in pancreatic cancer was clarified via immunohistochemical staining experiments. Finally, the effects of SLC16A1 on the results of cancer immunity were evaluated by in vitro experiments.

SLC16A1 was overexpressed in PDAC tissues and could be an independent prognostic factor. SLC16A1 was significantly negatively correlated with overall survival and suppressed the tumor immunity of PDAC. In clinic, SLC16A1 expression was significantly positively correlated with tumor progression and poor prognosis. We also found that SLC16A1 could suppress the antitumor ability of CD8+ T cells.

SLC16A1 is a biomarker for the prognosis of PDAC and can influence the immune environment of PDAC. These findings provide new insights into the treatment of PDAC.

Metabolomics for early pancreatic cancer detection in plasma samples from a Swedish prospective population-based biobank.

Pancreatic cancer research

Pancreatic ductal adenocarcinoma (pancreatic cancer) is often detected at late stages resulting in poor overall survival. To improve survival, more patients need to be diagnosed early when curative surgery is feasible. We aimed to identify circulating metabolites that could be used as early pancreatic cancer biomarkers.

We performed metabolomics by liquid and gas chromatography-mass spectrometry in plasma samples from 82 future pancreatic cancer patients and 82 matched healthy controls within the Northern Sweden Health and Disease Study (NSHDS). Logistic regression was used to assess univariate associations between metabolites and pancreatic cancer risk. Least absolute shrinkage and selection operator (LASSO) logistic regression was used to design a metabolite-based risk score. We used receiver operating characteristic (ROC) analyses to assess the discriminative performance of the metabolite-based risk score.

Among twelve risk-associated metabolites with a nominal P value <0.05, we defined a risk score of three metabolites [indoleacetate, 3-hydroxydecanoate (10:0-OH), and retention index (RI): 2,745.4] using LASSO. A logistic regression model containing these three metabolites, age, sex, body mass index (BMI), smoking status, sample date, fasting status, and carbohydrate antigen 19-9 (CA 19-9) yielded an internal area under curve (AUC) of 0.784 [95% confidence interval (CI): 0.714-0.854] compared to 0.681 (95% CI: 0.597-0.764) for a model without these metabolites (P value =0.007). Seventeen metabolites were significantly associated with pancreatic cancer survival [false discovery rate (FDR) <0.1].

Indoleacetate, 3-hydroxydecanoate (10:0-OH), and RI: 2,745.4 were identified as the top candidate biomarkers for early detection. However, continued efforts are warranted to determine the usefulness of these metabolites as early pancreatic cancer biomarkers.

Frontiers and future of immunotherapy for pancreatic cancer: from molecular mechanisms to clinical application.

Pancreatic cancer research

Pancreatic cancer is a highly aggressive malignant tumor, that is becoming increasingly common in recent years. Despite advances in intensive treat...

Genetically predicted blood metabolites mediate the association between circulating immune cells and pancreatic cancer: A Mendelian randomization study.

Pancreatic cancer research

Pancreatic cancer is characterized by metabolic dysregulation and unique immunological profiles. Nevertheless, the comprehensive understanding of immune and metabolic dysregulation of pancreatic cancer remains unclear. In the present study, we aimed to investigate the causal relationship of circulating immune cells and pancreatic cancer and identify the blood metabolites as potential mediators.

The exposure and outcome genome-wide association studies (GWAS) data used in the present study were obtained from the GWAS open-access database (https://gwas.mrcieu.ac.uk). The study used 731 circulating immune cell features, 1400 types of blood metabolites and pancreatic cancer from GWAS. We then performed bidirectional Mendelian randomization (MR) analyses to explore the causal relationships between the circulating immune cells and pancreatic cancer, and two-step MR to discover potential mediating blood metabolites in this process. All statistical analyses were performed in R software. The STROBE-MR (i.e. Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization) checklist for the reporting of MR studies was also used.

MR analysis identified seven types of circulating immune cells causally associated with pancreatic cancer. Furthermore, there was no strong evidence that genetically predicted pancreatic cancer had an effect on these seven types of circulating immune cells. Further two-step MR analysis found 10 types of blood metabolites were causally associated with pancreatic cancer and the associations between circulating CD39+CD8+ T cells and pancreatic cancer were mediated by blood orotates with proportions of 5.18% (p = 0.016).

The present study provides evidence supporting the causal relationships between various circulating immune cells, especially CD39+CD8+ T cells, and pancreatic cancer, with a potential effect mediated by blood orotates. Further research is needed on additional risk factors as potential mediators and establish a comprehensive immunity-metabolism network in pancreatic cancer.

Intelligent nanovesicle for remodeling tumor microenvironment and circulating tumor chemoimmunotherapy amplification.

Pancreatic cancer research

Imperceptible examination and unideal treatment effect are still intractable difficulties for the clinical treatment of pancreatic ductal adenocarc...

NEMO/NF-κB signaling functions as a double-edged sword in PanIN formation versus progression to pancreatic cancer.

Pancreatic cancer research

Pancreatic ductal adenocarcinoma (PDAC) is marked by a dismal survival rate, lacking effective therapeutics due to its aggressive growth, late-stage diagnosis, and chemotherapy resistance. Despite debates on NF-κB targeting for PDAC treatment, no successful approach has emerged.

To elucidate the role of NF-κB, we ablated NF-κB essential modulator (NEMO), critical for conventional NF-κB signaling, in the pancreata of mice that develop precancerous lesions (KC mouse model). Secretagogue-induced pancreatitis by cerulein injections was utilized to promote inflammation and accelerate PDAC development.

NEMO deletion reduced fibrosis and inflammation in young KC mice, resulting in fewer pancreatic intraepithelial neoplasias (PanINs) at later stages. Paradoxically, however, NEMO deletion accelerated the progression of these fewer PanINs to PDAC and reduced median lifespan. Further, analysis of tissue microarrays from human PDAC sections highlighted the correlation between reduced NEMO expression in neoplastic cells and poorer prognosis, supporting our observation in mice. Mechanistically, NEMO deletion impeded oncogene-induced senescence (OIS), which is normally active in low-grade PanINs. This blockage resulted in fewer senescence-associated secretory phenotype (SASP) factors, reducing inflammation. However, blocked OIS fostered replication stress and DNA damage accumulation which accelerated PanIN progression to PDAC. Finally, treatment with the DNA damage-inducing reagent etoposide resulted in elevated cell death in NEMO-ablated PDAC cells compared to their NEMO-competent counterparts, indicative of a synthetic lethality paradigm.

NEMO exhibited both oncogenic and tumor-suppressive properties during PDAC development. Caution is suggested in therapeutic interventions targeting NF-κB, which may be detrimental during PanIN progression but beneficial post-PDAC development.

Current status of endoscopic ultrasound-guided antitumor treatment for pancreatic cancer.

Pancreatic cancer research

Endoscopic ultrasound (EUS) was developed in the 1990s and has significantly transformed pancreatic tumor diagnosis. Subsequently, EUS has rapidly ...

Deciphering fatty acid biosynthesis-driven molecular subtypes in pancreatic ductal adenocarcinoma with prognostic insights.

Pancreatic cancer research

Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge due to its high heterogeneity and aggressiveness. Recognizing the urgency to delineate molecular subtypes, our study focused on the emerging field of lipid metabolism remodeling in PDAC, particularly exploring the prognostic potential and molecular classification associated with fatty acid biosynthesis.

Gene set variation analysis (GSVA) and single-sample gene set enrichment analysis (ssGSEA) were performed to evaluate the dysregulation of lipid metabolism in PDAC. Univariate cox analysis and the LASSO module were used to build a prognostic risk score signature. The distinction of gene expression in different risk groups was explored by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Weighted Gene Co-expression Network Analysis (WGCNA). The biological function of Acyl-CoA Synthetase Long Chain Family Member 5 (ACSL5), a pivotal gene within 7-hub gene signature panel, was validated through in vitro assays.

Our study identified a 7-hub gene signature associated with fatty acid biosynthesis-related genes (FRGs), providing a robust tool for prognosis prediction. The high-FRGs score group displayed a poorer prognosis, decreased immune cell infiltration, and a higher tumor mutation burden. Interestingly, this group exhibited enhanced responsiveness to various compounds according to the Genomics of Drug Sensitivity in Cancer (GDSC) database. Notably, ACSL5 was upregulated in PDAC and essential for tumor progression.

In conclusion, our research defined two novel fatty acid biosynthesis-based subtypes in PDAC, characterized by distinct transcriptional profiles. These subtypes not only served as prognostic indicator, but also offered valuable insights into their metastatic propensity and therapeutic potential.