The latest medical research on Neuromuscular Medicine

The research magnet gathers the latest research from around the web, based on your specialty area. Below you will find a sample of some of the most recent articles from reputable medical journals about neuromuscular medicine gathered by our medical AI research bot.

The selection below is filtered by medical specialty. Registered users get access to the Plexa Intelligent Filtering System that personalises your dashboard to display only content that is relevant to you.

Want more personalised results?

Request Access

Home-based motorised cycling in Non-ambulant adults with cerebral palsy: a feasibility study.

Cerebral Palsy

The primary aim was to establish feasibility of a home-based motorised cycling intervention in non-ambulant adults with cerebral palsy (CP). The secondary aim was to investigate perceived outcomes on pain, sleep, fatigue, and muscle stiffness.

Non-ambulant adults with CP were recruited from a specialist clinic. Feasibility encompassing recruitment, retention, adherence, acceptability, practicality, and safety, was the primary outcome., Cycling frequency and duration data were downloaded from the device and augmented by a usage diary and participant survey. Participant satisfaction was rated using a 5-point Likert scale where 1 = very satisfied. Quantitative data and open-ended survey responses were analysed using descriptive statistics and content analysis, respectively.

Ten non-ambulant adults with CP (5 female), 18 to 32 years, participated. The median (IQR) days cycled per week was 4 (3,5) with no serious adverse events recorded. The median (IQR) time cycled per session was 13.9 min, (10.2,19.8), per day. Participant satisfaction was high, median (IQR) 2 (1,2.5). Perceived benefits in pain, sleep, fatigue, stiffness, leg function, mood, behaviour, and social interactions were reported alongside occasional problems with spasms and foot placement.

This study provides preliminary data to support the feasibility of motorised cycling for non-ambulant adults with CP.

Cognitive rehabilitation effects on grey matter volume and Go-NoGo activity in progressive multiple sclerosis: results from the CogEx trial.

Neurology, Neurosurgery and Psychiatry

NCT03679468.

Participants were randomised to: 'CR plus EX', 'CR plus sham EX (EX-S)', 'EX plus sham CR (CR-S)' and 'CR-S plus EX-S' and attended 12-week intervention. All subjects performed physical/cognitive assessments at baseline, week 12 and 6 months post intervention (month 9). All MRI substudy participants underwent volumetric MRI and fMRI (Go-NoGo task).

104 PMS enrolled at four sites participated in the CogEx MRI substudy; 84 (81%) had valid volumetric MRI and valid fMRI. Week 12/month 9 cognitive performances did not differ among interventions; however, 25-62% of the patients showed Symbol Digit Modalities Test improvements. Normalised cortical grey matter volume (NcGMV) changes at week 12 versus baseline were heterogeneous among interventions (p=0.05); this was mainly driven by increased NcGMV in 'CR plus EX-S' (p=0.02). Groups performing CR (ie, 'CR plus EX' and 'CR plus EX-S') exhibited increased NcGMV over time, especially in the frontal (p=0.01), parietal (p=0.04) and temporal (p=0.04) lobes, while those performing CR-S exhibited NcGMV decrease (p=0.008). In CR groups, increased NcGMV (r=0.36, p=0.01) at week 12 versus baseline correlated with increased California Verbal Learning Test (CVLT)-II scores. 'CR plus EX-S' patients exhibited Go-NoGo activity increase (p<0.05, corrected) at week 12 versus baseline in bilateral insula.

In PMS, CR modulated grey matter (GM) volume and insular activity. The association of GM and CVLT-II changes suggests GM plasticity contributes to cognitive improvements.

Exploring early life social and executive function development in infants and risk for autism: a prospective cohort study protocol of NICU graduates and infants at risk for cerebral palsy.

Cerebral Palsy

Delays in early social and executive function are predictive of later developmental delays and eventual neurodevelopmental diagnoses. There is limited research examining such markers in the first year of life. High-risk infant groups commonly present with a range of neurodevelopmental challenges, including social and executive function delays, and show higher rates of autism diagnoses later in life. For example, it has been estimated that up to 30% of infants diagnosed with cerebral palsy (CP) will go on to be diagnosed with autism later in life.

This article presents a protocol of a prospective longitudinal study. The primary aim of this study is to identify early life markers of delay in social and executive function in high-risk infants at the earliest point in time, and to explore how these markers may relate to the increased risk for social and executive delay, and risk of autism, later in life. High-risk infants will include Neonatal Intensive Care Unit (NICU) graduates, who are most commonly admitted for premature birth and/or cardiovascular problems. In addition, we will include infants with, or at risk for, CP. This prospective study will recruit 100 high-risk infants at the age of 3-12 months old and will track social and executive function across the first 2 years of their life, when infants are 3-7, 8-12, 18 and 24 months old. A multi-modal approach will be adopted by tracking the early development of social and executive function using behavioural, neurobiological, and caregiver-reported everyday functioning markers. Data will be analysed to assess the relationship between the early markers, measured from as early as 3-7 months of age, and the social and executive function as well as the autism outcomes measured at 24 months.

This study has the potential to promote the earliest detection and intervention opportunities for social and executive function difficulties as well as risk for autism in NICU graduates and/or infants with, or at risk for, CP. The findings of this study will also expand our understanding of the early emergence of autism across a wider range of at-risk groups.

Modified sports interventions for children and adolescents with disabilities: A scoping review.

Cerebral Palsy

To establish the scope of the literature on modified sports interventions for children and adolescents with disabilities.

For this scoping review, articles were screened and the characteristics of studies were extracted. The modified sports interventions were described in terms of their structure, using the items of the Template for Intervention Description and Replication. Components of intervention treatment were described by using the language of the Rehabilitation Treatment Specification System. Results were analysed and validated by a group of professionals, using the Public and Patient Involvement strategy.

Twelve studies were eligible for inclusion, investigating interventions for children with autism spectrum disorder, cerebral palsy, and other conditions. Most studies presented a moderate level of evidence. Active ingredients were repeated sports-related motor training and introduction to the sport through a 'learning by action' mechanism. The intervention target was gross motor skills performance, and intervention aims (indirect outcomes) were physical activity participation and different body functions.

The inclusion of stakeholders in this review helped to validate our findings about the characteristics and structure of modified sports interventions, to identify research gaps, and to provide a step process for clinical implementation. Future investigations are warranted of the effectiveness of modified sports investigations with better quality studies, including participation outcomes and studies with non-ambulant children.

Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus.

Cerebral Palsy

Magnesium sulphate is a common therapy in perinatal care. Its benefits when given to women at risk of preterm birth for fetal neuroprotection (prevention of cerebral palsy for children) were shown in a 2009 Cochrane review. Internationally, use of magnesium sulphate for preterm cerebral palsy prevention is now recommended practice. As new randomised controlled trials (RCTs) and longer-term follow-up of prior RCTs have since been conducted, this review updates the previously published version.

To assess the effectiveness and safety of magnesium sulphate as a fetal neuroprotective agent when given to women considered to be at risk of preterm birth.

Two review authors independently assessed RCTs for inclusion, extracted data, and assessed risk of bias and trustworthiness. Dichotomous data were presented as summary risk ratios (RR) with 95% confidence intervals (CI), and continuous data were presented as mean differences with 95% CI. We assessed the certainty of the evidence using the GRADE approach.

We included six RCTs (5917 women and their 6759 fetuses alive at randomisation). All RCTs were conducted in high-income countries. The RCTs compared magnesium sulphate with placebo in women at risk of preterm birth at less than 34 weeks' gestation; however, treatment regimens and inclusion/exclusion criteria varied. Though the RCTs were at an overall low risk of bias, the certainty of evidence ranged from high to very low, due to concerns regarding study limitations, imprecision, and inconsistency. Primary outcomes for infants/children: Up to two years' corrected age, magnesium sulphate compared with placebo reduced cerebral palsy (RR 0.71, 95% CI 0.57 to 0.89; 6 RCTs, 6107 children; number needed to treat for additional beneficial outcome (NNTB) 60, 95% CI 41 to 158) and death or cerebral palsy (RR 0.87, 95% CI 0.77 to 0.98; 6 RCTs, 6481 children; NNTB 56, 95% CI 32 to 363) (both high-certainty evidence). Magnesium sulphate probably resulted in little to no difference in death (fetal, neonatal, or later) (RR 0.96, 95% CI 0.82 to 1.13; 6 RCTs, 6759 children); major neurodevelopmental disability (RR 1.09, 95% CI 0.83 to 1.44; 1 RCT, 987 children); or death or major neurodevelopmental disability (RR 0.95, 95% CI 0.85 to 1.07; 3 RCTs, 4279 children) (all moderate-certainty evidence). At early school age, magnesium sulphate may have resulted in little to no difference in death (fetal, neonatal, or later) (RR 0.82, 95% CI 0.66 to 1.02; 2 RCTs, 1758 children); cerebral palsy (RR 0.99, 95% CI 0.69 to 1.41; 2 RCTs, 1038 children); death or cerebral palsy (RR 0.90, 95% CI 0.67 to 1.20; 1 RCT, 503 children); and death or major neurodevelopmental disability (RR 0.81, 95% CI 0.59 to 1.12; 1 RCT, 503 children) (all low-certainty evidence). Magnesium sulphate may also have resulted in little to no difference in major neurodevelopmental disability, but the evidence is very uncertain (average RR 0.92, 95% CI 0.53 to 1.62; 2 RCTs, 940 children; very low-certainty evidence). Secondary outcomes for infants/children: Magnesium sulphate probably reduced severe intraventricular haemorrhage (grade 3 or 4) (RR 0.76, 95% CI 0.60 to 0.98; 5 RCTs, 5885 infants; NNTB 92, 95% CI 55 to 1102; moderate-certainty evidence) and may have resulted in little to no difference in chronic lung disease/bronchopulmonary dysplasia (average RR 0.92, 95% CI 0.77 to 1.10; 5 RCTs, 6689 infants; low-certainty evidence). Primary outcomes for women: Magnesium sulphate may have resulted in little or no difference in severe maternal outcomes potentially related to treatment (death, cardiac arrest, respiratory arrest) (RR 0.32, 95% CI 0.01 to 7.92; 4 RCTs, 5300 women; low-certainty evidence). However, magnesium sulphate probably increased maternal adverse effects severe enough to stop treatment (average RR 3.21, 95% CI 1.88 to 5.48; 3 RCTs, 4736 women; moderate-certainty evidence). Secondary outcomes for women: Magnesium sulphate probably resulted in little to no difference in caesarean section (RR 0.96, 95% CI 0.91 to 1.02; 5 RCTs, 5861 women) and postpartum haemorrhage (RR 0.94, 95% CI 0.80 to 1.09; 2 RCTs, 2495 women) (both moderate-certainty evidence). Breastfeeding at hospital discharge and women's views of treatment were not reported.

The currently available evidence indicates that magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus, compared with placebo, reduces cerebral palsy, and death or cerebral palsy, in children up to two years' corrected age, and probably reduces severe intraventricular haemorrhage for infants. Magnesium sulphate may result in little to no difference in outcomes in children at school age. While magnesium sulphate may result in little to no difference in severe maternal outcomes (death, cardiac arrest, respiratory arrest), it probably increases maternal adverse effects severe enough to stop treatment. Further research is needed on the longer-term benefits and harms for children, into adolescence and adulthood. Additional studies to determine variation in effects by characteristics of women treated and magnesium sulphate regimens used, along with the generalisability of findings to low- and middle-income countries, should be considered.

Early administration of umbilical cord blood cells following brief high tidal volume ventilation in preterm sheep: a cautionary tale.

Cerebral Palsy

Umbilical cord blood (UCB) cells are a promising treatment for preterm brain injury. Access to allogeneic sources of UCB cells offer the potential for early administration to optimise their therapeutic capacities. As preterm infants often require ventilatory support, which can contribute to preterm brain injury, we investigated the efficacy of early UCB cell administration following ventilation to reduce white matter inflammation and injury.

Preterm fetal sheep (0.85 gestation) were randomly allocated to no ventilation (SHAM; n = 5) or 15 min ex utero high tidal volume ventilation. One hour following ventilation, fetuses were randomly allocated to i.v. administration of saline (VENT; n = 7) or allogeneic term-derived UCB cells (24.5 ± 5.0 million cells/kg; VENT + UCB; n = 7). Twenty-four hours after ventilation, lambs were delivered for magnetic resonance imaging and post-mortem brain tissue collected. Arterial plasma was collected throughout the experiment for cytokine analyses. To further investigate the results from the in vivo study, mononuclear cells (MNCs) isolated from human UCB were subjected to in vitro cytokine-spiked culture medium (TNFα and/or IFNγ; 10 ng/mL; n = 3/group) for 16 h then supernatant and cells collected for protein and mRNA assessments respectively.

In VENT + UCB lambs, systemic IFNγ levels increased and by 24 h, there was white matter neuroglial activation, vascular damage, reduced oligodendrocytes, and increased average, radial and mean diffusivity compared to VENT and SHAM. No evidence of white matter inflammation or injury was present in VENT lambs, except for mRNA downregulation of OCLN and CLDN1 compared to SHAM. In vitro, MNCs subjected to TNFα and/or IFNγ displayed both pro- and anti-inflammatory characteristics indicated by changes in cytokine (IL-18 & IL-10) and growth factor (BDNF & VEGF) gene and protein expression compared to controls.

UCB cells administered early after brief high tidal volume ventilation in preterm fetal sheep causes white matter injury, and the mechanisms underlying these changes are likely dysregulated responses of the UCB cells to the degree of injury/inflammation already present. If immunomodulatory therapies such as UCB cells are to become a therapeutic strategy for preterm brain injury, especially after ventilation, our study suggests that the inflammatory state of the preterm infant should be considered when timing UCB cells administration.

'High hopes for treatment': Australian stakeholder perspectives of the clinical translation of advanced neurotherapeutics for rare neurological diseases.

Cerebral Palsy

Advanced therapies offer unprecedented opportunities for treating rare neurological disorders (RNDs) in children. However, health literacy, perceptions and understanding of novel therapies need elucidation across the RND community. This study explored healthcare professionals' and carers' perspectives of advanced therapies in childhood-onset RNDs.

In this mixed-methodology cross-sectional study, 20 healthcare professionals (clinicians, genetic counsellors and scientists) and 20 carers completed qualitative semistructured interviews and custom-designed surveys. Carers undertook validated psychosocial questionnaires. Thematic and quantitative data analysis followed.

Participants described high positive interest in advanced therapies, but low knowledge of, and access to, reliable information. The substantial 'therapeutic gap' and 'therapeutic odyssey' common to RNDs were recognised in five key themes: (i) unmet need and urgency for access; (ii) seeking information; (iii) access, equity and sustainability; (iv) a multidisciplinary and integrated approach to care and support and (v) difficult decision-making. Participants were motivated to intensify RND clinical trial activity and access to advanced therapies; however, concerns around informed consent, first-in-human trials and clinical trial procedures were evident. There was high-risk tolerance despite substantial uncertainties and knowledge gaps. RNDs with high mortality, increased functional burdens and no alternative therapies were consistently prioritised for the development of advanced therapies. However, little consensus existed on prioritisation to treatment access.

This study highlights the need to increase clinician and health system readiness for the clinical translation of advanced therapeutics for RNDs. Co-development and use of educational and psychosocial resources to support clinical decision-making, set therapeutic expectations and promotion of equitable, effective and safe delivery of advanced therapies are essential.

Participant insights into the psychosocial burden and information need to enhance the delivery of care in this formative study are informing ongoing partnerships with families, including co-production and dissemination of psychoeducational resources featuring their voices hosted on the Sydney Children's Hospitals Network website SCHN Brain-Aid Resources.

Early Neurodevelopmental Assessments for Predicting Long-Term Outcomes in Infants at High Risk of Cerebral Palsy.

Cerebral Palsy

Studies suggest that early neurodevelopmental assessments are beneficial for identifying cerebral palsy, yet their effectiveness in practical scenarios and their ability to detect cognitive impairment are limited.

To assess the effectiveness of early neurodevelopmental assessments in identifying cerebral palsy and cognitive and other neurodevelopmental impairments, including their severity, within a multidisciplinary clinic.

This diagnostic study was conducted at Monash Children's Hospital, Melbourne, Australia. Participants were extremely preterm infants born at less than 28 weeks' gestation or extremely low birth weight infants less than 1000 g and term encephalopathic infants who received therapeutic hypothermia, attending the early neurodevelopmental clinic between January 2019 and July 2021. Data were analyzed from December 2023 to January 2024.

Early cerebral palsy or high risk of cerebral palsy, the absence of fidgety movements, and Hammersmith Infant Neurological Examination (HINE) scores at corrected age (CA) 3 to 4 months. Early cerebral palsy or high risk of cerebral palsy diagnosis was based on absent fidgety movements, a low HINE score (<57), and medical neurological examination.

The outcomes of interest were cerebral palsy, cognitive and neurodevelopmental impairments and their severity, diagnosed at 24 to 36 months' CA.

A total of 116 infants (median [IQR] gestational age, 27 [25-29] weeks; 65 [56%] male) were included. Diagnosis of early cerebral palsy or high risk of cerebral palsy demonstrated a sensitivity of 92% (95% CI, 63%-99%) and specificity of 84% (95% CI, 76%-90%) for predicting cerebral palsy and 100% (95% CI, 59%-100%) sensitivity and 80% (95% CI, 72%-87%) specificity for predicting moderate to severe cerebral palsy. Additionally, the accuracy of diagnosis of early cerebral palsy or high risk of cerebral palsy was 85% (95% CI, 77%-91%) for predicting cerebral palsy and 81% (95% CI, 73%-88%) for predicting moderate to severe cerebral palsy. Similarly, the absence of fidgety movements had an 81% (95% CI, 73%-88%) accuracy in predicting cerebral palsy, and HINE scores exhibited good discriminatory power with an area under the curve of 0.88 (95% CI, 0.79-0.97) for cerebral palsy prediction. However, for cognitive impairment, the predictive accuracy was 44% (95% CI, 35%-54%) for an early cerebral palsy or high risk of cerebral palsy diagnosis and 45% (95% CI, 36%-55%) for the absence of fidgety movements. Similarly, HINE scores showed poor discriminatory power for predicting cognitive impairment, with an area under the curve of 0.62 (95% CI, 0.51-0.73).

In this diagnostic study of infants at high risk for cerebral palsy or other cognitive or neurodevelopmental impairment, early neurodevelopmental assessments at 3 to 4 months' CA reliably predicted cerebral palsy and its severity at 24 to 36 months' CA, signifying its crucial role in facilitating early intervention. However, for cognitive impairment, longer-term assessments are necessary for accurate identification.

Development of algorithms for estimating the Child Health Utility 9D from Caregiver Priorities and Child Health Index of Life with Disability.

Cerebral Palsy

The primary aim was to determine Child Health Utility 9D (CHU9D) utilities from the Caregiver Priorities and Child Health Index of Life with Disabilities (CPCHILD) for non-ambulatory children with cerebral palsy (CP).

One hundred and eight surveys completed by Australian parents/caregivers of children with CP were analysed. Spearman's coefficients were used to investigate the correlations between the two instruments. Ordinary least square, robust MM-estimator, and generalised linear models (GLM) with four combinations of families and links were developed to estimate CHU9D utilities from either the CPCHILD total score or CPCHILD domains scores. Internal validation was performed using 5-fold cross-validation and random sampling validation. The best performing algorithms were identified based on mean absolute error (MAE), concordance correlation coefficient (CCC), and the difference between predicted and observed means of CHU9D.

Moderate correlations (ρ 0.4-0.6) were observed between domains of the CHU9D and CPCHILD instruments. The best performing algorithm when considering the CPCHILD total score was a generalised linear regression (GLM) Gamma family and logit link (MAE = 0.156, CCC = 0.508). Additionally, the GLM Gamma family logit link using CPCHILD comfort and emotion, quality of life, and health domain scores also performed well (MAE = 0.152, CCC = 0.552).

This study established algorithms for estimating CHU9D utilities from CPCHILD scores for non-ambulatory children with CP. The determined algorithms can be valuable for estimating quality-adjusted life years for cost-utility analysis when only the CPCHILD instrument is available. However, further studies with larger sample sizes and external validation are recommended to validate these findings.

Female RNA concussion (FeRNAC) study: assessing hormone profiles and salivary RNA in females with concussion by emergency departments in New Zealand: a study protocol.

Cerebral Palsy

Australian New Zealand Clinical Trials Registry (ANZCTR) registration number ACTRN12623001129673.

This prospective cohort study recruits participants from New Zealand EDs who are biologically female, of reproductive age (16-50 years) and with a confirmed diagnosis of concussion from an ED healthcare professional. Participants are excluded by ED healthcare professionals from study recruitment as part of initial routine assessment if they have a pre-diagnosed psychiatric condition, neurological condition (i.e., epilepsy, cerebral palsy) or more than three previously diagnosed concussions. Participants provide a saliva sample for measurement of sncRNA's, and online survey responses relating to hormone profile and symptom recovery at 7-day intervals after injury until they report a full return to work/study. The study is being performed in accordance with ethical standards of the Declaration of Helsinki with ethics approval obtained from the Health and Disability Ethics Committee (HDEC #2021 EXP 11655), Auckland University of Technology Ethics Committee (AUTEC #22/110) and locality consent through Wellington hospital research office.

If saliva samples confirm presence of sncRNAs in females with concussion, it will provide evidence of the potential of saliva sampling as an objective tool to aid in diagnosis of, and confirmation of recovery from, concussion. Findings will determine whether expression of sncRNAs is influenced by steroid hormones in females and may outline the need for sex specific application and interpretation of sncRNAs as a clinical and/or research tool.

Reflections on Participation at Home, As Self-Reported by Young People with Cerebral Palsy.

Cerebral Palsy

This study explored the home-based participation of young people with cerebral palsy (CP) and described factors that make participation easier or h...

Exome sequencing reveals genetic heterogeneity and clinically actionable findings in children with cerebral palsy.

Cerebral Palsy

Cerebral palsy (CP) is the most common motor disability in children. To ascertain the role of major genetic variants in the etiology of CP, we cond...