The latest medical research on Neurodevelopmental Disabilities

The research magnet gathers the latest research from around the web, based on your specialty area. Below you will find a sample of some of the most recent articles from reputable medical journals about neurodevelopmental disabilities gathered by our medical AI research bot.

The selection below is filtered by medical specialty. Registered users get access to the Plexa Intelligent Filtering System that personalises your dashboard to display only content that is relevant to you.

Want more personalised results?

Request Access

Sex differences during development in cortical temporal processing and event related potentials in wild-type and fragile X syndrome model mice.

Journal of Neurodevelopmental Disorders

Autism spectrum disorder (ASD) is currently diagnosed in approximately 1 in 44 children in the United States, based on a wide array of symptoms, including sensory dysfunction and abnormal language development. Boys are diagnosed ~ 3.8 times more frequently than girls. Auditory temporal processing is crucial for speech recognition and language development. Abnormal development of temporal processing may account for ASD language impairments. Sex differences in the development of temporal processing may underlie the differences in language outcomes in male and female children with ASD. To understand mechanisms of potential sex differences in temporal processing requires a preclinical model. However, there are no studies that have addressed sex differences in temporal processing across development in any animal model of ASD.

To fill this major gap, we compared the development of auditory temporal processing in male and female wildtype (WT) and Fmr1 knock-out (KO) mice, a model of Fragile X Syndrome (FXS), a leading genetic cause of ASD-associated behaviors. Using epidural screw electrodes, we recorded auditory event related potentials (ERP) and auditory temporal processing with a gap-in-noise auditory steady state response (ASSR) paradigm at young (postnatal (p)21 and p30) and adult (p60) ages from both auditory and frontal cortices of awake, freely moving mice.

The results show that ERP amplitudes were enhanced in both sexes of Fmr1 KO mice across development compared to WT counterparts, with greater enhancement in adult female than adult male KO mice. Gap-ASSR deficits were seen in the frontal, but not auditory, cortex in early development (p21) in female KO mice. Unlike male KO mice, female KO mice show WT-like temporal processing at p30. There were no temporal processing deficits in the adult mice of both sexes.

These results show a sex difference in the developmental trajectories of temporal processing and hypersensitive responses in Fmr1 KO mice. Male KO mice show slower maturation of temporal processing than females. Female KO mice show stronger hypersensitive responses than males later in development. The differences in maturation rates of temporal processing and hypersensitive responses during various critical periods of development may lead to sex differences in language function, arousal and anxiety in FXS.

Reduced lateralization of multiple functional brain networks in autistic males.

Journal of Neurodevelopmental Disorders

Autism spectrum disorder has been linked to a variety of organizational and developmental deviations in the brain. One such organizational difference involves hemispheric lateralization, which may be localized to language-relevant regions of the brain or distributed more broadly.

In the present study, we estimated brain hemispheric lateralization in autism based on each participant's unique functional neuroanatomy rather than relying on group-averaged data. Additionally, we explored potential relationships between the lateralization of the language network and behavioral phenotypes including verbal ability, language delay, and autism symptom severity. We hypothesized that differences in hemispheric asymmetries in autism would be limited to the language network, with the alternative hypothesis of pervasive differences in lateralization. We tested this and other hypotheses by employing a cross-sectional dataset of 118 individuals (48 autistic, 70 neurotypical). Using resting-state fMRI, we generated individual network parcellations and estimated network asymmetries using a surface area-based approach. A series of multiple regressions were then used to compare network asymmetries for eight significantly lateralized networks between groups.

We found significant group differences in lateralization for the left-lateralized Language (d = -0.89), right-lateralized Salience/Ventral Attention-A (d = 0.55), and right-lateralized Control-B (d = 0.51) networks, with the direction of these group differences indicating less asymmetry in autistic males. These differences were robust across different datasets from the same participants. Furthermore, we found that language delay stratified language lateralization, with the greatest group differences in language lateralization occurring between autistic males with language delay and neurotypical individuals.

These findings evidence a complex pattern of functional lateralization differences in autism, extending beyond the Language network to the Salience/Ventral Attention-A and Control-B networks, yet not encompassing all networks, indicating a selective divergence rather than a pervasive one. Moreover, we observed an association between Language network lateralization and language delay in autistic males.

Early administration of umbilical cord blood cells following brief high tidal volume ventilation in preterm sheep: a cautionary tale.

Cerebral Palsy

Umbilical cord blood (UCB) cells are a promising treatment for preterm brain injury. Access to allogeneic sources of UCB cells offer the potential for early administration to optimise their therapeutic capacities. As preterm infants often require ventilatory support, which can contribute to preterm brain injury, we investigated the efficacy of early UCB cell administration following ventilation to reduce white matter inflammation and injury.

Preterm fetal sheep (0.85 gestation) were randomly allocated to no ventilation (SHAM; n = 5) or 15 min ex utero high tidal volume ventilation. One hour following ventilation, fetuses were randomly allocated to i.v. administration of saline (VENT; n = 7) or allogeneic term-derived UCB cells (24.5 ± 5.0 million cells/kg; VENT + UCB; n = 7). Twenty-four hours after ventilation, lambs were delivered for magnetic resonance imaging and post-mortem brain tissue collected. Arterial plasma was collected throughout the experiment for cytokine analyses. To further investigate the results from the in vivo study, mononuclear cells (MNCs) isolated from human UCB were subjected to in vitro cytokine-spiked culture medium (TNFα and/or IFNγ; 10 ng/mL; n = 3/group) for 16 h then supernatant and cells collected for protein and mRNA assessments respectively.

In VENT + UCB lambs, systemic IFNγ levels increased and by 24 h, there was white matter neuroglial activation, vascular damage, reduced oligodendrocytes, and increased average, radial and mean diffusivity compared to VENT and SHAM. No evidence of white matter inflammation or injury was present in VENT lambs, except for mRNA downregulation of OCLN and CLDN1 compared to SHAM. In vitro, MNCs subjected to TNFα and/or IFNγ displayed both pro- and anti-inflammatory characteristics indicated by changes in cytokine (IL-18 & IL-10) and growth factor (BDNF & VEGF) gene and protein expression compared to controls.

UCB cells administered early after brief high tidal volume ventilation in preterm fetal sheep causes white matter injury, and the mechanisms underlying these changes are likely dysregulated responses of the UCB cells to the degree of injury/inflammation already present. If immunomodulatory therapies such as UCB cells are to become a therapeutic strategy for preterm brain injury, especially after ventilation, our study suggests that the inflammatory state of the preterm infant should be considered when timing UCB cells administration.

'High hopes for treatment': Australian stakeholder perspectives of the clinical translation of advanced neurotherapeutics for rare neurological diseases.

Cerebral Palsy

Advanced therapies offer unprecedented opportunities for treating rare neurological disorders (RNDs) in children. However, health literacy, perceptions and understanding of novel therapies need elucidation across the RND community. This study explored healthcare professionals' and carers' perspectives of advanced therapies in childhood-onset RNDs.

In this mixed-methodology cross-sectional study, 20 healthcare professionals (clinicians, genetic counsellors and scientists) and 20 carers completed qualitative semistructured interviews and custom-designed surveys. Carers undertook validated psychosocial questionnaires. Thematic and quantitative data analysis followed.

Participants described high positive interest in advanced therapies, but low knowledge of, and access to, reliable information. The substantial 'therapeutic gap' and 'therapeutic odyssey' common to RNDs were recognised in five key themes: (i) unmet need and urgency for access; (ii) seeking information; (iii) access, equity and sustainability; (iv) a multidisciplinary and integrated approach to care and support and (v) difficult decision-making. Participants were motivated to intensify RND clinical trial activity and access to advanced therapies; however, concerns around informed consent, first-in-human trials and clinical trial procedures were evident. There was high-risk tolerance despite substantial uncertainties and knowledge gaps. RNDs with high mortality, increased functional burdens and no alternative therapies were consistently prioritised for the development of advanced therapies. However, little consensus existed on prioritisation to treatment access.

This study highlights the need to increase clinician and health system readiness for the clinical translation of advanced therapeutics for RNDs. Co-development and use of educational and psychosocial resources to support clinical decision-making, set therapeutic expectations and promotion of equitable, effective and safe delivery of advanced therapies are essential.

Participant insights into the psychosocial burden and information need to enhance the delivery of care in this formative study are informing ongoing partnerships with families, including co-production and dissemination of psychoeducational resources featuring their voices hosted on the Sydney Children's Hospitals Network website SCHN Brain-Aid Resources.

Early Neurodevelopmental Assessments for Predicting Long-Term Outcomes in Infants at High Risk of Cerebral Palsy.

Cerebral Palsy

Studies suggest that early neurodevelopmental assessments are beneficial for identifying cerebral palsy, yet their effectiveness in practical scenarios and their ability to detect cognitive impairment are limited.

To assess the effectiveness of early neurodevelopmental assessments in identifying cerebral palsy and cognitive and other neurodevelopmental impairments, including their severity, within a multidisciplinary clinic.

This diagnostic study was conducted at Monash Children's Hospital, Melbourne, Australia. Participants were extremely preterm infants born at less than 28 weeks' gestation or extremely low birth weight infants less than 1000 g and term encephalopathic infants who received therapeutic hypothermia, attending the early neurodevelopmental clinic between January 2019 and July 2021. Data were analyzed from December 2023 to January 2024.

Early cerebral palsy or high risk of cerebral palsy, the absence of fidgety movements, and Hammersmith Infant Neurological Examination (HINE) scores at corrected age (CA) 3 to 4 months. Early cerebral palsy or high risk of cerebral palsy diagnosis was based on absent fidgety movements, a low HINE score (<57), and medical neurological examination.

The outcomes of interest were cerebral palsy, cognitive and neurodevelopmental impairments and their severity, diagnosed at 24 to 36 months' CA.

A total of 116 infants (median [IQR] gestational age, 27 [25-29] weeks; 65 [56%] male) were included. Diagnosis of early cerebral palsy or high risk of cerebral palsy demonstrated a sensitivity of 92% (95% CI, 63%-99%) and specificity of 84% (95% CI, 76%-90%) for predicting cerebral palsy and 100% (95% CI, 59%-100%) sensitivity and 80% (95% CI, 72%-87%) specificity for predicting moderate to severe cerebral palsy. Additionally, the accuracy of diagnosis of early cerebral palsy or high risk of cerebral palsy was 85% (95% CI, 77%-91%) for predicting cerebral palsy and 81% (95% CI, 73%-88%) for predicting moderate to severe cerebral palsy. Similarly, the absence of fidgety movements had an 81% (95% CI, 73%-88%) accuracy in predicting cerebral palsy, and HINE scores exhibited good discriminatory power with an area under the curve of 0.88 (95% CI, 0.79-0.97) for cerebral palsy prediction. However, for cognitive impairment, the predictive accuracy was 44% (95% CI, 35%-54%) for an early cerebral palsy or high risk of cerebral palsy diagnosis and 45% (95% CI, 36%-55%) for the absence of fidgety movements. Similarly, HINE scores showed poor discriminatory power for predicting cognitive impairment, with an area under the curve of 0.62 (95% CI, 0.51-0.73).

In this diagnostic study of infants at high risk for cerebral palsy or other cognitive or neurodevelopmental impairment, early neurodevelopmental assessments at 3 to 4 months' CA reliably predicted cerebral palsy and its severity at 24 to 36 months' CA, signifying its crucial role in facilitating early intervention. However, for cognitive impairment, longer-term assessments are necessary for accurate identification.

Development of algorithms for estimating the Child Health Utility 9D from Caregiver Priorities and Child Health Index of Life with Disability.

Cerebral Palsy

The primary aim was to determine Child Health Utility 9D (CHU9D) utilities from the Caregiver Priorities and Child Health Index of Life with Disabilities (CPCHILD) for non-ambulatory children with cerebral palsy (CP).

One hundred and eight surveys completed by Australian parents/caregivers of children with CP were analysed. Spearman's coefficients were used to investigate the correlations between the two instruments. Ordinary least square, robust MM-estimator, and generalised linear models (GLM) with four combinations of families and links were developed to estimate CHU9D utilities from either the CPCHILD total score or CPCHILD domains scores. Internal validation was performed using 5-fold cross-validation and random sampling validation. The best performing algorithms were identified based on mean absolute error (MAE), concordance correlation coefficient (CCC), and the difference between predicted and observed means of CHU9D.

Moderate correlations (ρ 0.4-0.6) were observed between domains of the CHU9D and CPCHILD instruments. The best performing algorithm when considering the CPCHILD total score was a generalised linear regression (GLM) Gamma family and logit link (MAE = 0.156, CCC = 0.508). Additionally, the GLM Gamma family logit link using CPCHILD comfort and emotion, quality of life, and health domain scores also performed well (MAE = 0.152, CCC = 0.552).

This study established algorithms for estimating CHU9D utilities from CPCHILD scores for non-ambulatory children with CP. The determined algorithms can be valuable for estimating quality-adjusted life years for cost-utility analysis when only the CPCHILD instrument is available. However, further studies with larger sample sizes and external validation are recommended to validate these findings.

An affective assessment: incarnate biases in picture captions for autistic children.

International Journal of Epidemiology

Previous studies have explored cognitive disabilities experienced by autistic children between the ages of 2 and 5 who attend special schools. Howe...

Female RNA concussion (FeRNAC) study: assessing hormone profiles and salivary RNA in females with concussion by emergency departments in New Zealand: a study protocol.

Cerebral Palsy

Australian New Zealand Clinical Trials Registry (ANZCTR) registration number ACTRN12623001129673.

This prospective cohort study recruits participants from New Zealand EDs who are biologically female, of reproductive age (16-50 years) and with a confirmed diagnosis of concussion from an ED healthcare professional. Participants are excluded by ED healthcare professionals from study recruitment as part of initial routine assessment if they have a pre-diagnosed psychiatric condition, neurological condition (i.e., epilepsy, cerebral palsy) or more than three previously diagnosed concussions. Participants provide a saliva sample for measurement of sncRNA's, and online survey responses relating to hormone profile and symptom recovery at 7-day intervals after injury until they report a full return to work/study. The study is being performed in accordance with ethical standards of the Declaration of Helsinki with ethics approval obtained from the Health and Disability Ethics Committee (HDEC #2021 EXP 11655), Auckland University of Technology Ethics Committee (AUTEC #22/110) and locality consent through Wellington hospital research office.

If saliva samples confirm presence of sncRNAs in females with concussion, it will provide evidence of the potential of saliva sampling as an objective tool to aid in diagnosis of, and confirmation of recovery from, concussion. Findings will determine whether expression of sncRNAs is influenced by steroid hormones in females and may outline the need for sex specific application and interpretation of sncRNAs as a clinical and/or research tool.

Reflections on Participation at Home, As Self-Reported by Young People with Cerebral Palsy.

Cerebral Palsy

This study explored the home-based participation of young people with cerebral palsy (CP) and described factors that make participation easier or h...

Exome sequencing reveals genetic heterogeneity and clinically actionable findings in children with cerebral palsy.

Cerebral Palsy

Cerebral palsy (CP) is the most common motor disability in children. To ascertain the role of major genetic variants in the etiology of CP, we cond...

Behavioral changes in patients with Prader-Willi syndrome receiving diazoxide choline extended-release tablets compared to the PATH for PWS natural history study.

Journal of Neurodevelopmental Disorders

Clinical study C601 was originally registered on ClinicalTrials.gov on February 22, 2018 (NCT03440814). Clinical study C602 was originally registered on ClinicalTrials.gov on October 22, 2018 (NCT03714373). PATH for PWS was originally registered on ClinicalTrials.gov on October 24, 2018 (NCT03718416).

To better understand the longer-term impact of DCCR, a cohort from PATH for PWS, a natural history study that enrolled participants with PWS age 5 and older, who met the C601 age, weight and baseline hyperphagia inclusion criteria and had 2 hyperphagia assessments ≥ 6 months apart, were compared to the C601/C602 cohort. Hyperphagia was measured using the Hyperphagia Questionnaire for Clinical Trials (HQ-CT, range 0-36). The primary analysis used observed values with no explicit imputation of missing data. A sensitivity analysis was conducted in which all missing HQ-CT assessments in the C601/C602 cohort were assigned the highest possible value (36), representing the worst-case scenario. Other behavioral changes were assessed using the Prader-Willi Syndrome Profile questionnaire (PWSP).

Relative to the PATH for PWS natural history study cohort, the DCCR-treated C601/C602 cohort showed significant improvements in HQ-CT score at 26 weeks (LSmean [SE] -8.3 [0.75] vs. -2.5 [0.43], p < 0.001) and 52 weeks (LSmean [SE] -9.2 [0.77] vs. -3.4 [0.47], p < 0.001). The comparison between the cohorts remained significant in the worst-case imputation sensitivity analysis. There were also significant improvements in all domains of the PWSP at 26 weeks (all p < 0.001) and 52 weeks (all p ≤ 0.003) for C601/C602 participants compared to the PATH for PWS participants.

Long-term administration of DCCR to people with PWS resulted in changes in hyperphagia and other behavioral complications of PWS that are distinct from the natural history of the syndrome as exemplified by the cohort from PATH for PWS. The combined effects of administration of DCCR should reduce the burden of the syndrome on the patient, caregivers and their families, and thereby may benefit people with PWS and their families.

Clinical and molecular outcomes from the 5-Year natural history study of SSADH Deficiency, a model metabolic neurodevelopmental disorder.

Journal of Neurodevelopmental Disorders

Succinic semialdehyde dehydrogenase deficiency (SSADHD) represents a model neurometabolic disease at the fulcrum of translational research within the Boston Children's Hospital Intellectual and Developmental Disabilities Research Centers (IDDRC), including the NIH-sponsored natural history study of clinical, neurophysiological, neuroimaging, and molecular markers, patient-derived induced pluripotent stem cells (iPSC) characterization, and development of a murine model for tightly regulated, cell-specific gene therapy.

SSADHD subjects underwent clinical evaluations, neuropsychological assessments, biochemical quantification of γ-aminobutyrate (GABA) and related metabolites, electroencephalography (standard and high density), magnetoencephalography, transcranial magnetic stimulation, magnetic resonance imaging and spectroscopy, and genetic tests. This was parallel to laboratory molecular investigations of in vitro GABAergic neurons derived from induced human pluripotent stem cells (hiPSCs) of SSADHD subjects and biochemical analyses performed on a versatile murine model that uses an inducible and reversible rescue strategy allowing on-demand and cell-specific gene therapy.

The 62 SSADHD subjects [53% females, median (IQR) age of 9.6 (5.4-14.5) years] included in the study had a reported symptom onset at ∼ 6 months and were diagnosed at a median age of 4 years. Language developmental delays were more prominent than motor. Autism, epilepsy, movement disorders, sleep disturbances, and various psychiatric behaviors constituted the core of the disorder's clinical phenotype. Lower clinical severity scores, indicating worst severity, coincided with older age (R= -0.302, p = 0.03), as well as age-adjusted lower values of plasma γ-aminobutyrate (GABA) (R = 0.337, p = 0.02) and γ-hydroxybutyrate (GHB) (R = 0.360, p = 0.05). While epilepsy and psychiatric behaviors increase in severity with age, communication abilities and motor function tend to improve. iPSCs, which were differentiated into GABAergic neurons, represent the first in vitro neuronal model of SSADHD and express the neuronal marker microtubule-associated protein 2 (MAP2), as well as GABA. GABA-metabolism in induced GABAergic neurons could be reversed using CRISPR correction of the pathogenic variants or mRNA transfection and SSADHD iPSCs were associated with excessive glutamatergic activity and related synaptic excitation.

Findings from the SSADHD Natural History Study converge with iPSC and animal model work focused on a common disorder within our IDDRC, deepening our knowledge of the pathophysiology and longitudinal clinical course of a complex neurodevelopmental disorder. This further enables the identification of biomarkers and changes throughout development that will be essential for upcoming targeted trials of enzyme replacement and gene therapy.